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Abstract 

A theory of  electromagnetic and gravitational interactions between e lementary  particles 
is proposed,  based upon  the symmet ry  group SL(4).  According to this theory ,  gravita- 
tional fields are formed as the  result of  interactions be tween charged particles with oppo- 
site charge. 

1. Introduction 

Electromagnetic and gravitational interactions have the Coulomb attraction 
in common. This indicates the possibility of  constructing a theory that com- 
prises both of these interactions. Many theories have been constructed on this 
subject, and this paper presents another one. However, our theory is based 
upon the application of a symmetry group. 

In recent years, the application of symmetry groups in the theory of 
elementary particles has shown remarkable results. It is the purpose of this 
paper to show that both gravitational and electromagnetic interactions between 
elementary particles are governed by the same linear symmetry group. 

Notation. Greek indices/J, v, O, o, ~ run from t to 4. Latin indices i,/ ,  k run 
from 1 to 3. The summation convention is applied. Space-time coordinates are 
denoted by xU. x 4 is the time coordinate, x is the spatial coordinate vector. 
O(x) is the step function defined by 00c ) = 1 i fx  > 0, O(x) = 0 i f x  < 0. 

2. Some Irreducible Representations of  SL(4) 

By SL(4) we understand the group of real, linear, and homogenous trans- 
formations in four dimensions. The representatives A~'v of the infinitesimal 
generators satisfy the well-known commutation relations 

[AUv, APo ] = Au~6Pu - A P v ~ o  (2.1) 
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where AUv are real matrices. The group invariants are given by 

J1 = A~,a, J2 = A~vAV~ (2.2) 

An irreducible representation of the algebra (2.1) is given by the set of 4 x 4 
matrices A"v,  where the matrix element in the/~th row and vth column is 
equal to unity, all other elements being zero. The column vectors u ;  that form 
the bases, transform like covariant four-vectors, and we denote this represen- 
tation by 1R4. 

By means of the transformation A~v --> - -d~v (matrix A is the transposition 
of A), we obtain another irreducible representation. The column vectors uU 
that form the bases of this representation transform like contravariant four- 
vectors, and we denote this representation by IR4. The 16-dimensional repre- 
sentation space of the product IR4 x IR4 has two irreducible subspaces with 
6 and 10 dimensions: 

IR4 x IR4  =1R6 + IRlo (2.3) 

The components of the column vectors that form the bases o f lR  6 and IR 10 
transform, respectively, like antisymmetric and symmetric contravariant 
tensors of order 2. 

Similarly we have 

I-R4 xI-R4 = ~ 6  + I-Rio (2.4) 

The components of the column vectors that form the bases of IR6 and 1R lo 
transform, respectively, like antisymmetric and symmetric covariant tensors of 
order 2. 

The product space IR4 x IR4 has two irreducible subspaces with I and 15 
dimensions: 

IR 4 X ~  4 =IR 1 + IR M (2.5) 

The components of the column vectors that form the bases of I R ~  transform 
like mixed tensors of order 2. 

The product IR6 x 1t24 has two irreducible subspaces with 4 and 20 
dimensions: 

IN6 x lR4 = IR 4 + IR M (2.6) 

The column vectors that form the bases o f l R  M have components that are 
mixed tensors of order 3, with the symmetry property 

= ° ( 2 . 7 )  

SL(4) has also an infinite dimensional irreducible representation. By means of 
the operators XU, Yv that satisfy the Heisenberg algebra 

[Yv, X"]  = Buy, [X ' ,  X v] = 0 = [Yg, Y.] (2.8) 

we construct the operators 
DUv = X u Y~, (2.9) 

that satisfy the algebra (2.1). 
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By the help of (2.8)we get the following relation between the invariants: 

DUvDVu = DS*u(3 + DVv) (2.I 0) 

In order to obtain the bases of an irreducible representation, we consider the 
vector [a, a),  - co (a < 0% a = I, 2, belonging to the irreducible representation 
space of the Heisenberg algebra 

[Y, X] = 1 (2.11) 

If(x[ is an eigenbra of the Hermitean operator X, corresponding to the eigen- 
value x, ]a, ~) is defined by 

(x [a, 1 ) = (2 rr)- 1/2 0 (x) e -( 1/2 +/a)log x (2.12) 

(x la, 2) = (2rr)-l/20(--x)e -(1/2+ia)l°g (-x) 
(2.12') 

By straightforward calculations we verify the relations 

(a',a'la, a)=gc, dg(a-a ' ) ,  Z da(x'la, a)(a, o d x )=8 (x -  x') 
ot=l _ ~  

(2.13) 

The vectors I a, a) are thus bases of an irreducible representation of the Heisen- 
berg algebra (2.1 I). 

Denote by I b, 13) the direct product of four vectors of the type 1 a, ~). The 
vectors i b, 13) form the bases of an irreducible representation of the Heisenberg 
algebra (2.8). By the help of the formula 

(x [DS*v = xs* @(xl (2.14) 

we get the equation ( 4) 
DUulb, 13) . . . . .  2 + i  ~ b u ]b,~) (2.15) 

The invariants of SL(4) are real numbers, and consequently the vectors 
4 

Ib,3),  E b  u=O (2.16) 
*`=1 

form the bases of an infinite-dimensional irreducible representation of SL(4). 
WithDUv = x*`av, and the bases defined by the functions (xIb, 13), we shall 

denote this representation by IR(x). Because of the relation (2.10), we see 
that both invariants have the value - 2  in this representation. 

The representation formed by the product IRN x IR(x), where IRN is a 
finite-dimensional irreducible representation, has infinitesimal generators 

D*`v + A*`v 

The invariant J1 = Ds*s* + AS**, is a constant multiple of the unit matrix within 
the whole product space. But J2 = (D s*v + As*v)(DVv + AVs*) is a constant 
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multiple of the unit matrix only within subspaces defined by 

(DUvAVu + n)Iq~) = 0 (2.17) 

where n is a number that depends upon the value ofAUu.  For real values of 
n, the subspace defined by (2.17) is irreducible under SL(4), provided that 
[ ¢) also satisfies the condition 

(DUg + 2)[0)= 0 (2.17') 

The components of (x[¢)  transform like tensors, and in component form, 
(2.I7) form a set of tensor equations. 

Making use of the explicit matrices AUv belonging to IR4,  we find that the 
component form of (2.17) is given by 

xVau~v + n¢ u = 0 

IfAUv belong to IR4, the component form of (2.17) is given by 

- x U G ¢  " + n¢ u = 0 

If the matrices AUv belong to I R  6 o r  IR 10, the components of (x I q~) are 
contravariant tensors of order 2, and (2.17) has the component form 

- x U a o ~  ~ - X ~ a o 4 ~  ° + n ~  ~' = 0 

IfAUv belong to IR 6 or IRlo,  the components o f (x t  q~) are covariant tensors 
of order 2, and (2.17) has the component form 

x°au(o~v + x °GCuo  + nCuv = 0 

In the following applications, the value of n equals zero in the contravariant 
equations, and it equals 2 in the covariant and mixed equations. 

The component equations of (2.17) that are of interest, are given by 

a ~  = 0 (2.18) 

xV~u~v + 20~ = 0 (2.19) 

3uCuv = 3v(a uv = 0 (2.20) 

x a b u ~ v  + x°3v~uo + 2Cur = 0 (2.21) 

x O ~ u ~ v  + x O ~ v ~ o  - xP3o¢~v + 2(~Pv = 0 (2.22) 

In addition we have (2.17'), which we write in the form 

(xU3 u + 2)q~ = 0 (2.23) 

3. Particles and Antiparticles 

As the representative of a charged particle, we shall use the column vector 
U, with components U u that transform under IR4. In the standard state (rest 
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state) the components of  U are given by 

V_+ : (0, 0, 0, W~) = (0, 0, 0,-+1) (3.1) 

where U+ is a particle with positive charge, and U_ is a particle with negative 
charge. 

We shall assume that a neutral particle might be formed as the result of  an 
interaction between U+ and U-.  A possible neutral particle state is thus given 
by 

t = ~ u + g _  

where ~ is an interaction constant. 
We write 

t = s + a  

where the components s~V = sV~ of s transform under 1R 10, and the components 
a ~v = - a  v~ of  a transform under 1R 6. s is interpreted as a representative of  a 
neutral massive particle, and the standard state is given by 

s i~ = 0, s 44 = 1 (3.2) 

A neutral zero mass particle, such as the photon,  is supposed to be represented 
b y a .  

A charged antiparticle isrepresented by a column vector U, with components 
U s that transform under I R  4. Neutral antiparticles__ might_be represented by the 
column vectors g and if, that transform under I R  lO and I R  6, respectively. 

However, a neutral particle might also be formed as the result o f  interactions 
between particles and antiparticles, and the column vector w, with components 
w "  u that transform under I R ~ ,  is also a possible representative of  a neutral 
particle. The standard state of  a massive particle is Nven by 

wi# -7 0 = Wvi, W44 = 1 (3.3) 

The neutron is supposed to be of  the type (3.3), because it decays into a proton, 
an electron, and an antineutrino. The neutron state is therefore of  the form 
u + u _ ~ .  

4. P h o t o n s  

Define the functions r/~z by 

~7 i = [ x l - 3 x  i, ~74 = 0 (4.1) 

is a static, spherically symmetric field with center at the origin. Since the 
center is not moving, (4.1) is chosen as the standard state of  this field. 
Function (4.1) is a solution of (2.18) and (2.23) and therefore transforms 
under 1R4(x ) .  

The column vector ~ with components 

T/# = (n i, 0) (4.2) 
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transforms under IRa(x) ,  since (4.2) is a solution of (2.19) and (2.23). We shall 
interpret 

¢ = k~, ~ = kS 

as photon fields in the vacuum state; k is a constant. 
Let us consider an interaction between the vacuum state photon ¢ and a 

charged particle U. The interaction state is represented by the column vector 

{bU m- C6~ 6 + C10~10 

The components of ~6 have the form 

~ '  = e(¢t*V v - pvU, U) (4.3) 

where e is an interaction constant. 
For arbitrary values of Cu and U v, the components ~ v  do not transform 

among themselves. However, if q~ and U are the standard states (4.1) and (3.1), 
respectively, (4.3) is given by 

q~/] = 0, cP ~a = e~ i (4.4) 

which is a solution of (2.20). 
Similarly, an interaction {50 forms the field ~, which in the standard state 

is given by 

#Pi] = O, ¢Pia = e¢i (4.5). 

q~zv is a solution of (2.21) and transforms thus under lR6(x) .  The dual of q~,u, 
if2 *#v = e # v P ° ~ p o  , is a solution of (2.20), and the dual of ¢#~v, ~ u  = e~,vpa ~ ° ° ,  
is a solution of (2.21). 

The fact that ~#v and q~.uv are solutions of (2.20) is expressed by the 
Maxwell equations of electromagnetic fields in empty space. From the point 
of view of the present theory, the Maxwell equations state that ~,,v and q~***" 
transform under IR6(x) .  

Function (4.4) is interpreted as the photon field created by the particle U 
at rest at the origin. The interaction ¢U thus has the effect of raising the 
vacuum state photons ¢ into the observable state 55. The field equations (2.20) 
and the "antifield" equations (2.21) have the same standard state solutions. 
This might be interpreted as expressing that photons and antiphotons are 
indistinguishable. The photon equations (2.18_) and (2.19)have the same 
property. It is important to note that q~ and q~, in the standard state, represent 
a field of photons outside the origin, plus a charged particle at rest at the 
origin. 

We consider now an interaction between the system ~ and a particle U, 
where U is assumed to have the opposite charge of the particle at the center 
of the field ~. The interaction state is given by 

~ U  = c41~/4 -I- c20l~/20 (4.6) 
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where c4 and c20 are constants. The components of ~/4 are given by 

c~ ,vU v (4.7) 

where a is a constant. For arbitrary values of @uv and U v, .~4 do not transform 
under an irreducible representation of SL(4). In this case (4.7) has the familiar 
interpretation as the change in four-momentmn with proper time, of  the particle 
U. Of course, this interpretation is possible only as long as the particle state U 
is connected with the standard state (3.1) by a Lorentz transformation. 

If @ and U are standard states, if4 is proportional to/} and transforms under 
IR4(x). This is interpreted as the particular interaction between particles of  
opposite charge that results in the formation of a neutral particle. In this inter- 
action, the field @ is converted into the vacuum state field }. 

5. Gravitons and Gravitational Interactions 

We consider now the state qJ2o, which is the other possible outcome of the 
interaction (4.6). The components of ~2o are given by 

r~v = K~su~U° (5.1) 

If @ and U are standard states, the 20 components lP~v have the form 

F/u, = 0, P14 = GMr7 i (5.2) 

where the interaction constant • is written • = (ek)-iGM. Equations (5.2) form 
a solution of (2.22) and transform under IRM2o(X). The irreducible field state 
given by (5.2) is interpreted as the gravitational field of  a particle that is at 
rest at the origin. M is the mass of the particle, and G is the Newtonian gravi- 
tational constant. We write 

Ugp-+ P (5.3) 

However, F might also be formed by an interaction between a neutral particle 
w and a vacuum state photon ¢: 

w¢~ -+ r (5.4) 

The components of w~ that form the field F are given by 

Fur° __ k-1 Ga(wa ¢u _ we ~u) (55)  

With w and ~ in the standard state, (5.5) and (5.2) are identical. Let us consider 
an interaction between a neutral particle w and the field (5.2). We write 

mwP -+ X4 (5.6) 

where the interaction constant m equals the mass of the particle w. We assume 
that the components of the interaction state vector X4 have the form 

mw%r'g~ (5.7) 
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Like (4.7) we interpret (5.7) as the change in four-momentum with proper 
time of the particle w; m is the mass of  w: 

. ~  o _ a p .  (5.8) mw P , v -  d-T 

I f w  is moving with velocity v, we have w14 = 72v i, w44 = 3 '2 , 72 = 1 - v 2. 
Making use of  the relations 

dt 
d'r 7, P = - ( P l , P 2 , P 3 )  

(5.8) is written 

d p_p = -GMm71 x1-3x = F, dp____4 = F - v (5.9) 
dt dt 

For moderate velocities v, where 7 -~ 1, the equations (5.9) are the Newtonian 
equations of  motion of  a particle in a gravitational field with source at the 
origin. Equation (5.8) expresses these equations in relativistic covariant form. 

We have thus shown that  our interpretation of  (5.2) and (5.5) as a field of  
gravitons is reasonable. 

Let us for a moment  return to the electromagnetic interactions. An inter- 
action between the Maxwell field ~ ,  q~* and a particle U is, up to a constant 
factor, given by ~*U,  with the components 

eu~p~ qo*P° U~ = q~ u~U ~ 

We therefore write 

qg*U = ~ U  (5.10) 

Because photons are their own antiparticles, the interaction between the Maxwell 
field ~5" and U equals the interaction between the "antifield" ~ and U. But inter- 
actions between charged particles_are most conveniently expressed by means 
of the "antifield" representation ~5. According to (5.4), the neutron creates a 
gravitational field lPn that in the standard state is given by  (5.2), where M is 
the mass of  the neutron. But a single proton or electron does not create gravi- 
tational fields, according to our theory. According to (5.3), a gravitational 
field is created as the result of  an interaction between charged particles. The 
irreducible field state (5.2) occurs if the particle U is at rest with respect to 
the same referential as the particle that  creates the field d~. Physically, this can 
only be realized if the particle_Uhas a charge that is opposite the charge of the 
particle that creates the field ~.  

We consider now a nucleus that  is formed by  two protons. This nucleus 
creates an electromagnetic field 2~p,  where ~p  is the proton field. Suppose that 
the nucleus interacts with an electron Ue in such a way that the electron is 
absorbed. In this case the interaction (5.3) forms a gravitational field. Assum- 
ing that 

Ue~p "~ Pn (5.11) 
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this field is given by 2Pn. The absorption of  the electron converts one of  the 
protons into a neutron, and the resulting nucleus is a deuteron. The gravita- 
tional field of  the deuteron is thus 21" n. As far as gravitation is concerned, an 
arbitrary nucleus is considered to be composed of  deuterons and neutrons. The 
a particle is thus composed of two deuterons and creates a gravitational field 
4I" n. In general, a nucleus with Z protons and N -  Z neutrons is considered to 
be composed of Z deuterons and N -  2Z neutrons. The gravitational field 
created by this nucleus is therefore given by 

Z2I'n + ( U -  2Z)Yn =NI'n (5.12) 

Being obtained by  simple addition, the field (5.12) is not expected to be quite 
accurate, because the nuclear binding energy causes small modifications in the 
mass. 

Equations (5.9) show that the principle of  equivalence is rigorously satisfied 
as far as neutral particles are concerned. But according to our theory, charged 
particles like protons and electrons violate this principle. It is of  course imposs- 
ible to decide experimentally whether a proton creates a gravitational field or 
not. 

On the other hand, our theory does not exclude the possibility of  an interac- 
tion between a proton or electron U and a gravitational field I ' .  But the com- 
ponents of  the interaction state vector I ' U  are tensors of  order 2, and this 
complicates the physical interpretation of this state. 

The hydrogen a tom represents an interaction state of  the type (5.11), and if 
the oscillatory motion of  the electron is neglected, the hydrogen atom creates 
a gravitational field of  the order of  magnitude Yn. If  the motion of  the electron 
is not neglected, the gravitational field of  the hydrogen a tom is still existing, 
but it is not static. 

The tensor I,uvo that is a solution of the equations 

~upuva = avI,,vo = ~oruva = 0 (5.13) 

is also interpreted as a gravitational field. This field is supposed to be formed 
by the interactions 

qsU-~ 1-' (5.14) 

~a -+ Fo (5.15) 

Cs --, r (5.16) 

The state vector q~a in (5.15) has the components ~ba = ¢4X + C201~O, where 

X ~va = (1/2c4)(efa  v° - cfa ua - (~%vu) 

I'o uva = (1/2C2o)(c~Ua va + ~VaUa + 4)aa vu) (5.17) 

If  the four nonvanishing components X uva form a solution of  (5.13), the field 
X transforms under IR4(x).  
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If the 20 components (5.17) form a solution of (5.13), the field F o transforms 
under 1R2o(X ) and is interpreted as the gravitational field created by the zero- 
mass particle a. 

Our theory thus predicts that both photons and neutrinos create gravitational 
fields. 

As far as electromagnetic interactions are concerned, there is complete sym- 
metry between particles and antiparticles. This is not so in the case of gravi- 
tational interactions. For.instance, the gravitational field created by an antipro- 
ton-positron interaction d~pUe(~pU-e ) has the components F~ua(I~ff) In 
order to transform under an irreducible representation of SL(4), these fields 
have to satisfy the equations 

xC~Pc~va + x~3oPuc~ a + xC~oF~vc, + nPuw = 0 (5.18) 

,~ uv v (5.19) -xUOc~F~ v - xV3c~l'~a ~ + x 3oFc~ + n I~  = 0 

But (5.18) and (5.19) have no static solutions of  the type (5.2). 

6. Final Remarks 

In Section 3 we have defined particle and antiparticle states by means of 
the bases of  some of the irreducible representations of  SL(4), which are 
mentioned in Section 2. In Section 4 we show that these definitions and inter- 
pretations lead to acceptable results as far as electromagnetic interactions are 
concerned. Of some interest is the interpretation of the Maxwell equations, as 
a necessary (but not sufficient) condition that the photon fields transform 
under an irreducible representation of SL(4). 

In Section 5, which we consider to be the important part of the paper, we 
have shown that it is a possibility that gravitons are formed by interactions 
between charged particles. 


